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Abstract. We consider remote points in general extensions of frames, with an emphasis on perfect
extensions. For a strict extension τXL → L determined by a set X of filters in L, we show that if there is an
ultrafilter in X then the extension has a remote point. In particular, if a completely regular frame L has a
maximal completely regular filter which is an ultrafilter, then βL → L has a remote point, where βL is the
Stone-Čech compactification of L. We prove that in certain extensions associated with radical ideals and
`-ideals of reduced f -rings, remote points induced by algebraic data are exactly non-essential prime ideals
or non-essential irreducible `-ideals. Concerning coproducts, we show that if M1 → L1 and M2 → L2 are
extensions of T1-frames, then each of these extensions has a remote point if the extension M1⊕M2 → L1⊕L2

has a remote point.

1. Introduction

Remote points in pointfree topology have hitherto been considered only in the case of completely regular
frames [12], and even then for the extension βL → L. In this note we extend the notion of remote point to

any extension M h
−→ L of an arbitrary L. In such a case we shall speak of a point p of M being remote from

L. Our motivation is that many extensions (and, in fact, all strict extensions [5]) of a frame L are equivalent
to extensions constructed by starting with a collection X of filters of the frame. Thus, to determine if an
extension has a remote point we need only check if certain types of filters are present in the collection X.
Indeed, if X contains an ultrafilter, then the strict extension τXL→ L determined by X has a remote point.

The paper consists of five sections. We start with preliminaries where we recall some few pertinent
results from frames and f -rings, and then proceed to Section 3 where we define remote points and show that
the definition is “conservative” if we restrict to sober spaces. Examples are then given in frames that need
not be regular. Following that we generate points from algebraic data in the following way. Given a reduced
commutative f -ring A with identity, let Rad(A) denote the frame of radical ideals of A, and A∗ the subring of
A consisting of bounded elements. The map ε : Rad(A∗)→ Rad(A), given by extension of ideals, is a dense
onto frame homomorphism; so that we have an extension in the frame sense. We show that remoteness
of points in this extension is intertwined with non-essentiality of prime ideals. Indeed, if A has C(X)-like
features in a manner we will make precise, then remote points of the extension ε : Rad(A∗) → Rad(A) are
exactly the non-essential prime ideals of A. Applied to the rings C(X), we have that remote points of the
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extension ε : Rad(C∗(X))→ Rad(C(X)) are, in the notation of Gilman and Jerison [17], exactly the maximal
ideals M∗p of C∗(X) for p an isolated point of βX.

Another result with an algebraic flavour deals with extensions associated with `-ideals of a reduced
f -ring with bounded inversion. In this case there is an extension L(A∗)→ L(A) for which we show that the
remote points are precisely the non-essential irreducible `- ideals of A, again if A is C(X)-like.

In Section 4 we prove the result about coproducts mentioned in the abstract. We precede that by showing
how some points in a binary coproduct can be constructed from points in the summands. It turns out that
for T1-frames L and M, the points of L ⊕M are precisely those formed from the points of L and M in this
way.

Section 5 deals with remote points in perfect extensions. We describe their presence in terms of saturated
filters. These are filters which contain every dense element. In particular, we establish that if a completely
regular frame L has a saturated maximal completely regular filter, then βL→ L has a remote point.

2. Preliminaries

2.1. Frames

Our references for frames are [20] and [22]. We follow, to a large extent, the notation of these texts, with
minor deviations such as, for instance, denoting the frame of open sets of a topological space X by OX. By
a point of L we mean a prime element, that is, an element p such that p , 1 and x ∧ y ≤ p implies x ≤ p or
y ≤ p. Following [23] we shall say a frame L is a T1-frame if its points are precisely the maximal elements,
where the term “maximal” is understood to mean maximal strictly below the top. Every regular frame is
a T1-frame. We denote the set of all points of L by Pt(L). The frame of ideals of L is denoted by JL. By a
quotient map we mean a surjective frame homomorphism.

A filter F (throughout assumed to be proper) in a frame L is completely prime if, for any S ⊆ L,
∨

S ∈ F
implies S ∩ F , ∅. If p ∈ Pt(L), then the set

Fp = {x ∈ L | x � p}

is a completely prime filter. On the other hand, if F is a completely prime filter in L, then the element

pF =
∨

(L r F)

is a point in M. Furthermore, pFp = p and FpF = F.

2.2. Extensions determined by sets of filters

A frame homomorphism is dense if it maps only the bottom element to the bottom element. If h : M→ L
is dense onto, then, for any a ∈ M and any b ∈ L, we have (i) h(a∗) = h(a)∗, (ii) h∗(b∗) = (h∗(b))∗, and (iii)
h∗h(a∗) = a∗. The third identity holds because h(h∗h(a∗) ∧ a) = 0, so that, by density of h, h∗h(a∗) ∧ a = 0,
whence h∗h(a∗) ≤ a∗, which is the nontrivial inequality in the claimed equality.

By an extension of L we mean a pair (M, h) where h : M→ L is a dense onto frame homomorphism. We

shall frequently write M h
−→ L for an extension of L. An extension M h

−→ L is called strict if h∗[L] generates
M. In [19], Hong defines a simple extension of a frame L determined by the set X of filters of L as follows. For
each a ∈ L, let Xa = {F ∈ X | a ∈ F} and let sXL be the subframe of L × P(X) given by

sXL = {(a,F) | F ⊆ Xa}.

The map s : sXL → L defined by s(a,F) = a is a dense onto frame homomorphism whose right adjoint is
given by s∗(a) = (a,Xa). The strict extension of L determined by X is the subframe of sXL generated by s∗[L].
See [5] for details. The Katětov extension of a frame L is the simple extension κ : κL→ L determined by the
set of all free ultrafilters, meaning the ultrafilters F such that

∨
{x∗ | x ∈ F} = 1. Properties of the Katětov

extension can be found in [21] and [24].
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2.3. f -Rings
All rings considered in this paper are commutative with identity 1. A ring is said to be reduced if it has

no nonzero nilpotent elements. An f -ring A is said to have bounded inversion if every a ≥ 1 is invertible.
The bounded part of A is denoted by A∗. The contraction of an ideal I of A is the ideal Ic = A∗ ∩ I of A∗. The
extension Je of an ideal J of A∗ is the ideal of A generated by J. An ideal of a ring is a radical ideal if whenever
it contains a power of an element, then it contains the element. The lattice Rad(A) of radical ideals of A
is a frame, and the map ε : Rad(A∗) → Rad(A) given by J 7→ Je is a dense onto frame homomorphism [16,
Proposition 3.6], so that we have an extension of the frame Rad(A). We recall that an ideal of a ring is called
essential if it meets every nonzero ideal nontrivially. We refer to [4] for information regarding the f -ring RL
of real-valued continuous functions on a frame L. Let I ∈ βL and rL denote the right adjoint of the join map
βL→ L. The ideals M I and O I are defined by

M I = {α ∈ RL | rL(cozα) ⊆ I} and O I = {α ∈ RL | cozα ∈ I}.

Maximal ideals of RL are precisely the ideals M I, for I ∈ Pt(βL) [13].

3. Remote points generally

General remote points in spaces are defined as follows. Let X be a topological space and Y ⊇ X be an
extension of X. A point p ∈ Y r X is said to be remote from X (or is called a remote point if there is no
danger of confusion) if for any nowhere dense set D in X, p < clY D. Now recall from [12] that a quotient
map η : L → N is said to be nowhere dense if for every nonzero x ∈ L there exists a nonzero y ≤ x in L such
that η(y) = 0. The terminology is justified by the fact that a subspace N of a topological space X is nowhere
dense if and only if the homomorphism OX→ ON, given by U 7→ U ∩N, is nowhere dense. It is shown in
[12, Lemma 3.2] that

a quotient L
η
−→ N of L is nowhere dense iff h∗(0) is dense.

Definition 3.1. Let M h
−→ L be an extension of L. A point p ∈ Pt(M) is remote from L if, for every nowhere dense

quotient L
η
−→ N of L, h∗(η∗(0)) � p. We denote the set of points of M that are remote from L by Pt(M n L).

If there is no danger of confusion, we shall simply say p is a remote point. Applied to βL → L, this
definition is precisely that of remote point employed in [12] because in a T1-frame L, a � p if and only if
a ∨ p = 1, for any a ∈ L and p ∈ Pt(L). The following characterisations of remote points are easy to prove
(and hence the proofs are omitted) if one takes into account that a closed quotient map M→ ↑a is nowhere

dense if and only if a is a dense element in M. Given an extension M h
−→ L of L and p ∈ Pt(M), we set

Up = {a ∈ L | h∗(a) � p}.

It is routine to check that Up is a (proper) filter in L. Following [8], we say a filter in a frame is saturated if it
contains all dense elements of the frame.

Proposition 3.2. Let M h
−→ L be an extension of L. The following statements about a point p ∈ Pt(M) are equivalent.

1. p is remote from L.
2. For any dense a ∈ L, h∗(a) � p.
3. Up is a saturated filter.

Let us show that the definition of remote point is “conservative” in the usual sense of usage of this term
in pointfree topology. If X is a sober space and p ∈ X, we write p̃ = X r clX {p}, so that, by sobriety,

Pt(OX) = {p̃ | p ∈ X}.

For an extension Y ⊇ X of sober spaces we denote by Rem(YrX) the set of points of Y that are remote from
X. Recall that for any continuous map f : X→ Y and U ∈ OX,

(O f )∗(U) = Y r clY(X rU).
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Lemma 3.3. Let Y ⊇ X be an extension of sober spaces, and denote by h : OY → OX the frame homomorphism
U 7→ X ∩U. For any p ∈ Y r X,

p ∈ Rem(Y r X) ⇐⇒ p̃ ∈ Pt(OY nOX).

Proof. (⇒) Let p ∈ Rem(Y r X) and U ∈ OX be dense. Then X r U is a nowhere dense set in X, so
that p < clY(X r U), which certainly implies Y r clY(X r U) * Y r clY{p}. That is, h∗(U) � p̃, and hence
p̃ ∈ Pt(OY nOX).

(⇐) Let N ⊆ X be nowhere dense in X, and considerOY h
−→ OX

η
−→ ON, where η is the nowhere dense

quotient map given by V 7→ N ∩ V. Therefore, by the present hypothesis, h∗η∗(0N) * p̃. Now

η∗(0N) = η∗(∅) = X r clX(N r ∅) = X r clX N,

and hence

h∗η∗(0N) = Y r clY

(
X r (X r clX N)

)
= Y r clY(clX N).

Consequently, the relation

h∗η∗(0N) * p̃ = Y r clY{p}

implies p < clY(clX N), whence p < clY N. Therefore p ∈ Rem(Y r X).

Here are examples of remote points in frames which are not necessarily completely regular.

Example 3.4. Call a downset U ∈ DL prime if, for any a, b ∈ L, a ∧ b ∈ U implies a ∈ U or b ∈ U. It is not hard
to show that U ∈ Pt(DL) if and only if U is a prime downset. The right adjoint of the homomorphism

∨
: DL→ L is

the map ↓ : L→ DL. Now, for any a ∈ L and U ∈ DL, ↓a � U if and only if a < U; so it follows from the proposition
that U ∈ DL is a remote point if and only if it is a prime downset containing no dense element.

Example 3.5. In the case of the extension
∨

: JL → L, more can be said. Recall from [20, Lemma II 3.4] that the
points of JL are precisely the prime ideals of L. So remote points in this extension are exactly the minimal prime ideals
of L because a prime ideal of L is minimal prime if and only if it contains no dense element.

Example 3.6. For any frame L, the set of points of κL, the Katětov extension of L, is

Pt(κL) = {(1,X r {F}) | F ∈ X} ∪ {(p,X) | p ∈ Pt(L)}.

This is proved in [21, Proposition 3.9]. Since every filter in X is an ultrafilter, so that it contains every dense element,
we have that, for any dense d ∈ L and any F ∈ X,

κ∗(d) = (d,Xd) = (d,X) � (1,X r {F}).

Therefore remote points of κL→ L are precisely the points (1,X r {F}), for F ∈ X. This agrees with the spatial result
that if X is any topological space which is not almost compact, then every point of κX r X is remote from X.

Now we aim to determine when, for a reduced f -ring A with bounded inversion, the extension
ε : Rad(A∗) → Rad(A) has remote points. We first observe that, generally, every non-essential prime
ideal of Rad(A∗) is a remote point. In the case where A resembles C(X) as explained below, we show that
these are precisely the remote points. We denote the annihilator of an ideal I in A by Ann(I), and the
annihilator of an ideal J in A∗ by Ann∗(J). Recall that in a reduced ring, an ideal is essential if and only if its
annihilator is the zero ideal.

Lemma 3.7. Let A be a reduced f -ring with bounded inversion. Every non-essential prime ideal of A∗ is a remote
point of the extension ε : Rad(A∗)→ Rad(A).



T. Dube, M. Mugochi / Filomat 29:1 (2015), 111–120 115

Proof. It is easy to verify that, for any ring B, the points of the frame Rad(B) are exactly the prime ideals of B.
In [18, Remarks 4.2] the authors observe that the pseudocomplements in Rad(B) are exactly the annihilator
ideals if B is reduced. Thus, dense elements of Rad(B) are precisely the essential radical ideals because in a
reduced ring an ideal is essential if and only if its annihilator is the zero ideal.

Now let P be a non-essential prime ideal of A∗. Consider any essential radical ideal I in A. This implies
Ann(I) = 0. Let x ∈ Ann∗(Ic) and u ∈ I. Then u

1+|u| ∈ Ic and so xu
1+|u| = 0, so that x ∈ Ann(I) and hence x = 0.

Thus Ic is an essential ideal in A∗. Consequently, Ic * P, which then shows that P is a remote point.

Recall that for a prime ideal P in a ring A, the ideal OP of A is defined by

OP = {a ∈ A | ab = 0 for some b ∈ A r P}.

If M is a maximal ideal, then OM is exactly the pure part, mM, of M; that is, the ideal

mM = {a ∈M | a = ab for some b ∈M}.

Let us also recall from [13, Lemma 4.3] that

an ideal Q of RL is essential if and only if
∨
{cozα | α ∈ Q} is a dense element in L.

Let M be an essential maximal ideal of RL. By [14, Lemma 4.4] and the fact (observed in the proof of [15,
Proposition 3.4]) that mM I = O I, it follows that OM is essential. In view of the fact that, for any completely
regular frame L, R∗L is isomorphic to R(βL), it follows from what we have just observed that for every
maximal ideal M of R∗L, the ideal OM of R∗L is essential in this subring. This motivates the following
definition.

Definition 3.8. An f -ring A is essentially good if, for every essential maximal ideal M of A∗, the ideal OM is
essential in A∗.

Every C(X) is essentially good because C(X) is isomorphic to R(OX).

Proposition 3.9. Let A be a reduced essentially good f -ring with bounded inversion. Then the remote points of the
extension ε : Rad(A∗)→ Rad(A) are exactly the non-essential prime ideals of A∗.

Proof. In view of the preceding lemma, we need only show that every remote point of this extension is a
non-essential prime ideal. Let P be an essential prime ideal in A∗. We aim to show that P is not a remote
point, which will then prove the result. Let M be a maximal ideal of A∗ with P ⊆ M. Since A is essentially
good, OM is an essential ideal in A∗. Let S ⊆ A∗ be the multiplicatively closed set

S = {a ∈ A∗ | a is a unit in A}.

By [16, Lemma 3.4], A = A∗[S−1]; the ring of fractions of A∗ with respect to S. Since OM ∩ S = ∅, Oe
M is a

proper ideal in A. We claim that it is essential. Indeed, if x ∈ Ann(Oe
M), then, for any c ∈ OM, x

1+|x|c = 0,
which implies x

1+|x| ∈ Ann∗(OM) = {0}, and hence x = 0. Next, we show that Oec
M ⊆ P. Let a ∈ Oec

M. Then there
is a d ∈ OM and u ∈ S such that a = du−1. Since d ∈ OM, there is a b ∈ A∗ rM such that bd = 0. This implies
ab = 0 ∈ P, whence a ∈ P because P is prime and b < P. Now, OM is a radical ideal because if w2

∈ OM, then
w2y = 0 for some y ∈ A∗ rM, which implies wy = 0 because A∗ is a reduced ring. Thus, by [16, Lemma 3.5],
Oe
∈ Rad(A), and is therefore a dense element in the frame Rad(A) for which ε∗(Oe

M) ≤ P. It follows from
Proposition 3.2 that P is not a remote point. This completes the proof.

In [1], Azarpanah shows that the non-essential prime ideals of C(X) are exactly the maximal ideals M p,
for p an isolated point in βX. Consequently, we have the following corollary.

Corollary 3.10. The remote points of the extension ε : Rad(C∗(X)) → Rad(C(X)) are precisely the maximal ideals
M ∗p of C∗(X), for p an isolated point of βX.
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The following result is in the same vein as the preceding one. Recall that an `-ideal of an f -ring (or, more
generally, an `-ring) is a ring ideal I such that

|a| ≤ |b| and b ∈ I =⇒ a ∈ I.

Let A be a reduced f -ring and L(A) be the frame of its `-ideals (see [3] for details). If τ : L(A∗) → L(A) is
the map I 7→

⋃
{[a] | a ∈ I}, where [a] denotes the `-ideal generated by a, then τ is a frame homomorphism

whose right adjoint is the contraction map (see [3, p. 141]). This homomorphism can be shown to be dense
onto by essentially the same argument as in the proof of [16, Proposition 3.6]. An `-ideal I of A is called
irreducible if A/I is totally ordered. For reduced f -rings, this is equivalent to saying whenever ab = 0, for
a, b ∈ A, then a ∈ I or b ∈ I. As mentioned in [3, Remark 2.3],

Pt(L(A)) = {I ∈ L(A) | I is irreducible}.

It is easy to verify that every annihilator ideal in a reduced f -ring A is an `-ideal; and, in fact, for any
I ∈ L(A), Ann(I) is the pseudocomplement of I in the frame L(A). Thus, I is a dense element in this frame if
and only if I is an essential ideal in A.

Proposition 3.11. Let A be a reduced essentially good f -ring with bounded inversion. Then the remote points of the
extension τ : L(A∗)→ L(A) are exactly the non-essential irreducible `-ideals of A∗.

Proof. An argument similar to the case of ε : Rad(A∗) → Rad(A) shows that non-essential irreducible `-
ideals of L(A∗) are remote points of the extension τ : L(A∗) → L(A). We show that there are no others. The
argument mimics the one employed in Proposition 3.9, with some minor changes. Let P be an essential
irreducible `-ideal in A∗. Let M be a maximal ideal of A∗ (and hence an `-ideal) containing P. It is easy to
check that OM is an `-ideal inA∗. We show that its extension is an `-ideal in A. In fact, for any `-ideal I
of A∗, Ie is an `-ideal in A. Indeed, suppose |a| ≤ |b| for some a ∈ A and b ∈ Ie. Pick u ∈ I and s ∈ S (the
set S as above) such that b = us−1, which is possible because A = A∗[S−1. This implies |as| ≤ |u|, whence
|

a
1+|a| ·

s
1+|s| | ≤ |u|. Since a

1+|a| and s
1+|s| are in A∗ and I is an `-ideal, it follows that | a

1+|a| ·
s

1+|s| | ∈ I, hence as ∈ I,
and thence a = (as)s−1

∈ Ie because Ie is an ideal of A. From here the rest follows as before since Oec
M ⊆ P as

P is irreducible.

4. Remote points and coproducts

In this section we show that there are instances where, informally speaking, summands in a binary
coproduct inherit remote points from the coproduct. We start by showing how points of a coproduct are
constructed from those of the summands. In fact, this is done in [11], but we shall give an alternative proof
based on a result of Banaschewski and Vermeulen [7] which we shall also use in another instance.

Recall that if, for i = 1, 2, hi : Mi → Li are frame homomorphisms, then the induced frame homomorphism
h1 ⊕ h2 : M1 ⊕M2 → L1 ⊕ L2 is given by

(h1 ⊕ h2)
(∨
α

(xα ⊕ yα)
)

=
∨
α

(
h1(xα) ⊕ h2(yα)

)
.

If the hi are dense (resp. onto), then h1 ⊕ h2 is also dense (resp. onto).

Lemma 4.1. Let L and M be frames, p ∈ Pt(L) and q ∈ Pt(M). Then

(p ⊕ 1M) ∨ (1L ⊕ q) ∈ Pt(L ⊕M).

Proof. Let ξ : L→ 2 and ζ : M→ 2 be the frame homomorphisms determined by p and q respectively. Recall
that 2 ⊕ 2 � 2. Consider the frame homomorphism

ξ ⊕ ζ : L ⊕M→ 2 ⊕ 2 given by a ⊕ b 7→ ξ(a) ⊕ ζ(b).
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By [7, Lemma 2],

(ξ ⊕ ζ)∗(0) =
∨
{ξ∗(a) ⊕ ζ∗(b) | a ⊕ b ≤ 0L⊕M}

=
(
ξ∗(0) ⊕ ζ∗(0)

)
∨

(
ξ∗(0) ⊕ ζ∗(1)

)
∨

(
ξ∗(1) ⊕ ζ∗(0)

)
= (p ⊕ q) ∨ (p ⊕ 1M) ∨ (1L ⊕ q)
= (p ⊕ 1M) ∨ (1L ⊕ q).

Therefore (p ⊕ 1M) ∨ (1L ⊕ q) is a point of L ⊕M.

Corollary 4.2. If L and M are T1-frames, then

Pt(L ⊕M) = {(p ⊕ 1M) ∨ (1L ⊕ q) | p ∈ Pt(L) and q ∈ Pt(M)}.

Proof. Let p ∈ Pt(L ⊕M) and L i
−→ L ⊕M

j
←− M be the coproduct injections. Then i∗(p) and j∗(p) are points

of L and M respectively such that(
i∗(p) ⊕ 1

)
∨

(
1 ⊕ j∗(p)

)
= ii∗(p) ∨ j j∗(p) ≤ p,

whence p =
(
i∗(p) ⊕ 1

)
∨

(
1 ⊕ j∗(p)

)
because coproducts of T1-frames are T1-frames [23]. The result therefore

follows from the foregoing lemma.

In the proof that follows, we write the right adjoint of a homomorphism hi : Mi → Li as hi∗ instead of
(hi)∗. By a T1-extension of a frame L we mean an extension M→ L where M is a T1-frame. In this case L is
then also a T1-frame.

Proposition 4.3. Let Mi
hi
−→ Li (for i = 1, 2) be T1-extensions of the frames Li. If the extension M1⊕M2

h1⊕h2
−→ L1⊕L2

has a remote point, then each Mi
hi
−→ Li has a remote point.

Proof. Pick pi ∈ Pt(Li) such that (p1 ⊕ 1) ∨ (1 ⊕ p2) is a point of M1 ⊕M2 remote from L1 ⊕ L2. Let a ∈ L1 be
dense. Then a ⊕ 1 is dense in L1 ⊕ L2 because, as shown in [6],

(a ⊕ 1)∗∗ = a∗∗ ⊕ 1∗∗ = 1 ⊕ 1 = 1L1⊕L2 .

Therefore, by Proposition 3.2, (h1 ⊕ h2)∗(a ⊕ 1) � (p1 ⊕ 1) ∨ (1 ⊕ p2). By [7, Lemma 2],

(h1 ⊕ h2)∗(a ⊕ 1) =
∨
{h1∗(x) ⊕ h2∗(y) | x ⊕ y ≤ a ⊕ 1},

and so there exist x ∈ L1 and y ∈ L2 such that x ⊕ y ≤ a ⊕ 1 and

h1∗(x) ⊕ h2∗(y) � (p1 ⊕ 1) ∨ (1 ⊕ p2).

This implies h1∗(x) ⊕ h2∗(y) � p1 ⊕ 1, and hence h1∗(x) � p1. Since h1∗(x) ⊕ h2∗(y) , 0, h1∗(x) , 0 and h2∗(y) , 0,
so that, by density of these homomorphisms, x , 0 and y , 0. Thus, the inequality 0 , x⊕ y ≤ a⊕ 1 implies

x ≤ a, and hence h1∗(a) � p1. Therefore p1 is a remote point of the extension M1
h1
−→ L1. The proof for the

other extension is similar.

Remark 4.4. The same proof shows that even if the Li are not T1-frames, if pi ∈ Pt(Li) and (p1 ⊕ 1) ∨ (1 ⊕ p2) is a
remote point of M1 ⊕M2 → L1 ⊕ L2, then each pi is a remote point of Mi → Li.
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5. Remote points in perfect extensions

Following [2], we say an extension M h
−→ L is perfect if h∗(a ∨ a∗) = h∗(a) ∨ h∗(a∗) for every a ∈ L. This

is equivalent to saying h∗(a ∨ b) = h∗(a) ∨ h∗(b) for all disjoint a and b in L. The extensions βL → L and
κL → L are perfect. For perfect extensions there are more equivalent conditions for a point to be remote.
As in [8], we say a filter F in a frame L is disjoint-prime if, for any a ∈ L, a ∨ a∗ ∈ F implies a ∈ F or a∗ ∈ F.
Because a filter is an ultrafilter if and only if, for every a ∈ L, either a ∈ F or a∗ ∈ F, it follows easily that a

filter is an ultrafilter if and only if it is saturated and disjoint-prime. Observe that if M h
−→ L is a perfect

extension, then Up is saturated for every p ∈ Pt(M). Call an ideal I in a frame L balanced if, for any a ∈ L,
a∗∗ ∈ I whenever a ∈ I. Minimal prime ideals are balanced because they do not contain dense elements, so
that if one such contains a∗∗, then it does not contain a∗, and hence it must contain a by primeness. For an

extension M h
−→ L and p ∈ Pt(M), we set

Ip = {a ∈ L | h∗(a) ≤ p},

so that Ip = L rUp.

Proposition 5.1. Let M h
−→ L be a perfect extension of L. The following statements about a point p ∈ Pt(M) are

equivalent.

1. p is a remote point.
2. For any dense a ∈ L, h∗(a) � p.
3. For any a ∈ L, h∗(a) ≤ p implies h∗(a∗) � p.
4. For any a ∈ L, h∗(a∗) ≤ p implies h∗(a) � p.
5. For any b ∈M, b∗ ≤ p implies h∗h(b) � p.
6. Up is an ultrafilter.
7. Ip is a minimal prime ideal of L.
8. Ip is a balanced ideal of L.

Proof. (2) ⇒ (3): Let a ∈ L be such that h∗(a) ≤ p. Since a ∨ a∗ is dense, (2) implies h∗(a ∨ a∗) � p. Since
h∗(a ∨ a∗) = h∗(a) ∨ h∗(a∗) and h∗(a) ≤ p, it follows that h∗(a∗) � p.

(3)⇒ (4): Clearly the denial of (4) contradicts (3).
(4)⇒ (5): For any b ∈M, b∗ = h∗h(b∗), so b∗ ≤ p implies h∗h(b∗) ≤ p, that is, h∗(h(b)∗) ≤ p, so that, h∗h(b) � p

by (4).
(5)⇒ (6): Let a ∈ L be such that a∗ < Up. Then h∗(a∗) ≤ p, that is h∗(a)∗ ≤ p. So, by (5), h∗hh∗(a) � p, that is,

h∗(a) � p, so that a ∈ Up. Therefore Up is an ultrafilter.
(6)⇒ (7): Since Ip = L rUp, it follows from [10, Corollary 3], which states that a filter is an ultrafilter if

and only if its set-theoretic complement is a minimal prime ideal, that Ip is a minimal prime ideal in L.
(7)⇒ (8): Minimal prime ideals are balanced.

(8) ⇒ (1): If L
η
−→ N is a nowhere dense quotient of L, then η∗(0) is dense, and is therefore not in Ip,

otherwise 1 = η∗(0)∗∗ ∈ Ip because Ip is balanced. Thus, h∗η∗(0) � p, hence p is remote from L.

We shall now determine, in terms of filters, when a perfect extension has remote points. It is easy to
check that the image of a filter under a dense onto homomorphism is a (proper) filter. Recall from Section
2 the notation and the one-one correspondence between points and completely prime filters.

Proposition 5.2. Let M h
−→ L be a perfect extension of L and p ∈ Pt(M). Then p is a remote point iff h[Fp] is an

ultrafilter.
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Proof. Assume first that p is a remote point. By Proposition 5.1, the filter Up is an ultrafilter. If a ∈ Up, then
h∗(a) � p, which is to say h∗(a) ∈ Fp, and hence a ∈ h[Fp] because a = hh∗(a). Therefore Up

⊆ h[Fp]. Since h[Fp]
is a (proper) filter, the maximality of Up implies h[Fp] = Up, and hence h[F] is an ultrafilter.

Conversely, assume h[Fp] is an ultrafilter. We shall show that Up is an ultrafilter, whence we shall be
done. Observe that Up

⊆ h[Fp] because the verification above for this assertion did not require that p be
a remote point. Now suppose, by way of contradiction, that there is an a ∈ Fp for which h(a) < Up. Then
h∗h(a) ≤ p, which implies a ≤

∨
(Lr Fp). Since a ∈ Fp and Fp is an upset, this implies

∨
(Lr Fp) ∈ Fp, which is

false because Fp is completely prime. Thus, h[Fp] ⊆ Up, and hence Up = h[Fp]. Therefore Up is an ultrafilter,
so that p is a remote point by Proposition 5.1.

Corollary 5.3. A perfect extension M h
−→ L of L has a remote point iff it has a completely prime filter F for which

h[F] is an ultrafilter. Furthermore, remote points are in bijective correspondence with completely prime filters G for
which h[G] is an ultrafilter.

Proof. This follows immediately from the proposition because p = pFp and FpF = F.

It is shown in [5] that if X is a set of filters in L, then, for any F ∈ X, the set

PF =
{
(a,XW) | a =

∨
W and F ∈ XW

}
is a completely prime filter in τXL for which τ[PF] = F. Consequently, we have the following corollary.

Corollary 5.4. If a set X of filters of L contains an ultrafilter and the strict extension τXL→ L is perfect, then it has
a remote point.

We recall from [5] that an extension M h
−→ L of L is said to be spatial over L if whenever h(a) = h(b) and

a � b, then there exists p ∈ Pt(M) such that b ≤ p and a � p. In the cited paper this is expressed in terms of
completely prime filters. A filter F ⊆ L is called a trace filter [5] if it is not completely prime but F = h[P] for

some completely prime filter P of M. We aim to show that if the perfect extension M h
−→ L is spatial over

L, then it has a remote point precisely if it has a completely prime filter whose image is saturated. We first
observe the following result.

Lemma 5.5. The following conditions on an extension M h
−→ L of L which is spatial over L are equivalent.

1. The extension is perfect.
2. For every p ∈ Pt(M), h[Fp] is disjoint-prime.
3. Every trace filter of the extension is disjoint-prime.

Proof. (1) ⇒ (2): Assume the extension is perfect and let p ∈ Pt(M). Let a ∈ L be such that a ∨ a∗ ∈ h[Fp].
Pick u ∈ Fp such that a∨ a∗ = h(u). Then u ≤ h∗(a∨ a∗) = h∗(a)∨ h∗(a∗). Thus, h∗(a)∨ h∗(a∗) ∈ Fp, which implies
h∗(a) ∈ Fp or h∗(a∗) ∈ Fp. Hence a ∈ h[Fp] or a∗ ∈ h[Fp].

(2)⇒ (3): This is trivial.
(3) ⇒ (1): Let X be the set of trace filters of the extension. By [5, Lemma 3], there is an isomorphism

ĥ : M → τXL such that the τĥ = h. Therefore it suffices to show that the extension τ : τXL → L is perfect if
every filter in X is disjoint-prime. Recall that, for any b ∈ L, τ∗(b) = (b,Xb), where

Xb = {F ∈ X | b ∈ F}.

Let a ∈ L. If F ∈ Xa∨a∗ , then a ∨ a∗ ∈ F, and hence a ∈ F or a∗ ∈ F by disjoint-primeness. This implies
F ∈ Xa ∪ Xa∗ , so that Xa∨a∗ ⊆ Xa ∪ Xa∗ , and hence Xa∨a∗ = Xa ∪ Xa∗ because the other inclusion holds anyway.
Thus,

τ∗(a) ∨ τ∗(a∗) = (a,Xa) ∨ (a∗,Xa∗ )
= (a ∨ a∗,Xa ∪ Xa∗ )
= τ∗(a ∨ a∗),

which proves that the extension is perfect.
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Corollary 5.6. A perfect extension M h
−→ L of L which is spatial over L has a remote point iff there is a completely

prime filter F ⊆M such that h[F] is saturated.

Proof. The left-to-right implication follows from Corollary 5.3 because ultrafilters are saturated. Conversely,
suppose the extension has a completely prime filter F as stated. For the point pF of M we have that h[FpF ]
is disjoint-prime by the foregoing lemma. Since FpF = F, it follows that h[F] is saturated and disjoint-prime,
and hence is an ultrafilter. Therefore M has a remote point.

We end with a sufficient condition, in terms of completely regular filters, for βL → L to have a remote
point. Recall that a filter F is said to be completely regular if, for every a ∈ F, there exists b ∈ F such that b ≺≺ a.
The following lemma appears in the pointed version as [8, Theorem 2.22].

Lemma 5.7. Every maximal completely regular filter in a completely regular frame is disjoint-prime. Hence it is an
ultrafilter iff it is saturated.

Proof. Let F be a maximal completely regular filter in a completely regular frame L. We know from [5] that
βL→ L is (isomorphic to) the strict extension τXL→ L, where X is the set of all maximal completely regular
filters in L. Thus, if p is the point of τXL corresponding to the completely prime filter

PF = {(a,XW) | a =
∨

W,F ∈ XW},

then τ[Fp] = F. Since βL→ L is a perfect extension, it follows from Lemma 5.5 that F is disjoint-prime.

Corollary 5.8. If a completely regular frame L has a saturated maximal completely regular filter, then βL→ L has a
remote point.
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